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a b s t r a c t

Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing
products. This study found neural cells can uptake 3–5 nm AgNPs, and investigated the potential effects
of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT as-
trocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 μg/ml) exposure, these
neural cells had obviously increased IL-1β secretion, and induced gene expression of C-X-C motif che-
mokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione syn-
thetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study
found amyloid-β (Aβ) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural
cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein
(APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were
reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and
protein expressions of Aβ deposition potentially to induce AD progress in neural cells. It's necessary to
take notice of AgNPs distribution in the environment.

& 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

In recent years, nanotechnology grows rapidly, and nano-
particles are produced and widely utilized in diverse areas of
different industrial applications because of its high interfacial re-
activity and unique physicochemical properties (Loo et al., 2013).
As to antibacterial/antifungal characteristics, silver nanoparticles
(AgNPs) have been used in clothes, cosmetics, wound dressing, air-
freshener sprays, water disinfectant, sunscreens, hygiene products
and food containers, which increases the release of nanoparticles
to environment and may cause exposure to human (Ribeiro et al.,
2013). The exposure route for AgNPs happens via ingestion, in-
halation or dermal contact. Kulthong et al. (2010) indicated that
the antibacterial fabric from six commercial fabrics releases silver
of AgNPs when is immersed in artificial sweat as a model to re-
present the human skin environment. In addition, AgNPs may
have an access to systemic circulation through broken skin when
we use the AgNP-containing products such as bandages or wound
dressings (Singh and Ramarao, 2012). After injection different
Inc. This is an open access article u
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particles size of Ag (nanosized and microsized) in rats (62.8 mg/
kg), AgNPs can translocate to the blood circulation and distribute
throughout the main organs, especially in the kidney, liver, spleen,
lung and brain, and induce blood–brain barrier (BBB) destruction
and astrocyte swelling to cause neuronal degeneration (Tang et al.,
2009).

Ag is one of the most toxic metals for the marine systems
(Tappin et al., 2010), and the monovalent silver ion is considered as
the most toxic silver species in aquatic systems and causes in-
tracellular accumulation in phytoplankton (Lee et al., 2005).
However, the AgNPs (o100 nm, 0.5 and 1 μg/ml) cause nuclear
condensation and induce higher dramatically cytotoxicity than Ag
ions in human lymphoma cells (Eom and Choi, 2010). In addition, a
proteomic analysis showed that 20 nm AgNPs interfere with pro-
tein regulations of mitochondrial translation, RNA processing,
tRNA metabolism and cell proliferation more than Ag ions and
larger size AgNPs (100 nm) in human colon adenocarcinoma LoVo
cells (Verano-Braga et al., 2014). The diameter 139737 nm AgNPs
trigger dose-dependent effect of decreased cell viability on human
lung carcinoma A549 cells in exposure to 5, 10 and 15 μg/ml
AgNPs (Foldbjerg et al., 2011). Besides, the cell deaths in apoptosis
and necrosis all increase after exposure to AgNPs (2.5, 5, 10 and
15 μg/ml). Moreover, Gaiser et al. (2013) pointed that 20 nm
nder the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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diameter nanoparticles can cause toxicity, inflammation and oxi-
dative stress after exposure to human C3A hepatocytes and female
Wistar rats. Besides, the inflammatory cytokines, e.g., IL-8, MIP2,
IL-1RI and TNF-α, are both increased on in vitro and in vivo models
after AgNPs-induction. Overall, the Ag and Cu nanoparticles can
easily enter the mice brain to disrupt BBB permeability and induce
neurotoxicity, which alters brain sensory, motor and cognitive
functions (Sharma and Sharma, 2012). AgNPs (20 nm; 1, 5, 10 and
50 μg/ml) can reduce cell viability in primary rat cortical cells, and
inhibit the sprouting of neuronal branches and elongation of
neuritis for fragmentation and degeneration of mature neurons
(Xu et al., 2013).

Brain is composed of endothelial cells, neurons and glial cells.
Astrocytes are known as reactive astrogliosis cells to regulate
metal homeostasis, supply nutrients to neurons and protect other
brain cells against oxidative stress and metal toxicity (Sofroniew
and Vinters, 2010). Microglias are a type of glial cell major brain-
resident macrophage-like cells in the central nerve system (CNS)
to defense against microorganism invasion and injury, and release
some cytokine factors to mediate neuroinflammatory processes
(Wang et al., 2011). The inflammatory response, a tissue reaction
to injury or an antigen, releases cytokines, chemokines, reactive
oxygen species (ROS) and nitric oxides (NO) (Wei et al., 2013).
Nerve cells connect to each other to form neural networks. Neu-
rons are electrically excitable brain endothelium to transmit in-
formation through electrical and chemical signals via synapses
and contact with perivascular astrocytes and pericytes (Weiss
et al., 2009). Tang et al. (2010) indicated that AgNPs can cross
through the BBB of rat brain to influence brain cells through
transcytosis of capillary endothelial cells detectable by transmis-
sion electronic microscopy (TEM) and inductively-coupled plasma
mass spectrometry (ICP-MS). Thus, the highest concentration of
silver is observed in the kidneys and brain 28 days after injection a
dose 5 mg kg�1 bw AgNPs (20 and 200 nm) in Wistar rats.
Dziendzikowska et al. (2012) found that AgNPs increase ROS
generation and heme oxygenase 1 (HO-1) protein expression to
cause neuronal oxidative damage and directly interfere with cal-
cium responses in primary mixed neural cells. Increased levels of
ROS occurred chronically in the early disease, which is relevant to
neurodegenerative disorders, such as Alzheimer's and Parkinson's
disease (Smith and Cass, 2007). Moreover, glutathione metabolism
plays an important role of protecting cell from oxidative stress,
and their gene expression related to oxidative stress are sig-
nificantly altered in the caudate, frontal cortex and hippocampus
of male C57BL/6N mice after administered 25 nm AgNPs (Rahman
et al., 2009).

The C-X-C motif chemokine 13 (CXCL13) play a role in the B-cell
recruitment and distribution, associated with chronic in-
flammatory process (Nakajima et al., 2008). Macrophage receptor
with collagenous structure (MARCO) is important for immune re-
sponses to bacterial infections by mediating the binding and
phagocytosis of pathogens (Komine et al., 2013). Accordingly,
studies have indicated that AgNPs can induce ROS and cytokines
increasing and then cause inflammatory response. As CXCL13 and
MARCO genes are immune mediators in response to inflammation,
exposure to AgNPs may change their gene expression. Moreover,
glutathione synthetase (GSS) can synthesize glutathione (GSH)
potentially to inhibit oxidative stress and prevent cellular damage
from free radicals and peroxides (Koike et al., 2013), and AgNPs
exposure probably alters GSS gene expression.

Amyloid beta (Aβ) is a peptide of amino acids that is processed
from amyloid precursor protein (APP). Aβ protein is considered the
main responsible for neurodegenerative disorder such as Alzhei-
mer's disease (AD). The up-regulation of APP gene expression in-
terferes with Aβ metabolism underlying the pathogenesis of AD
(Dong et al., 2012). Low-density lipoprotein receptor (LDLR)
enhances Aβ uptake and degradation through binding Aβ and Aβ/
ApoE complex (Basak et al., 2012). Thus, the down-regulation of
LDLR gene leads Aβ deposition. Besides, neprilysin (NEP) is a major
Aβ-degrading enzyme in brain to degrade Aβ protein (El–Amouri
et al., 2007). Sequentially, it is important to investigate the re-
ceptors and gene expression regulating Aβ amyloid internalization
in neural cells for understanding the AD pathogenesis.

According to previous studies, the information until now is not
well known that whether the AgNPs-induced neuroinflammation
cause the changes in gene expression related neurodegenerative
disorder such as AD. In this study, we investigated whether the 3–
5 nm AgNPs can pass through mouse brain neuronal cells and
induce Aβ amyloid generation underlying the potential effect of
AgNPs on gene expression of inflammatory response, oxidative
stress, and Aβ deposition.
2. Material and methods

2.1. Cell culture and exposure

This study used three types of neural cells, murine brain ALT
astrocytes (BCRC 60581), murine microglial BV-2 cells (ICLC
ATL03001) and mouse neuroblastoma Neuro-2a (N2a) cells (BCRC
60026). N2a cells were cultured in high glucose Dulbecco's Mod-
ified Eagle's Medium (DMEM; CORNING, New York) supplemented
with 10 percent fetal bovine serum (Invitrogen, Carlsbad, Canada),
1 percent antibiotic (Biowest, Loire Valley, France), 1 percent
L-glutamine (Invitrogen), 1 percent sodium pyruvate (Invitrogen)
in a cell incubator with 5 percent CO2 at 37 °C. ALT cells and BV-2
cells were cultured in the similar medium with N2a cells except
for the lack of 1 percent sodium pyruvate. When N2a cells grew to
70–80 percent confluence of a culture plate, the growth medium
was removed and replaced with differentiation medium for two
days. The differentiation medium containing forskolin and iso-
butylmethylxanthine (IBMX) was added to N2a cells for 24 h dif-
ferentiation. N2a cells can be differentiated into a neuron-like
morphology with expression of several neuronal markers. The 3–
5 nm AgNPs were produced by a physical method without sur-
factants or stabilizers (Gold Nanotech Inc., Taiwan). AgNPs (0.5, 1,
5, 10 and 12.5 μg/ml) and lipopolysaccharides (LPS; 0.2 and 2 μg/
ml; Invitrogen) were respectively added into the medium to treat
ALT, BV-2 and N2a cells for 24 h exposure.

2.2. Polarizing microscope

N2a cells were cultured on glass coverslips with the treatment
of AgNPs (5 nm, 12.5 μg/ml) for 24 h. After treatment, the cells on
coverslips were fixed in 4 percent paraformaldehyde (PFA) for
10 min at 4 °C, then washed with phosphate buffered saline (PBS)
and mounted with slides in mountain medium. Images of AgNPs
location were captured under the polarizing microscopy (IX71,
Olympus, Tokyo, Japan).

2.3. Cell proliferation of neural cells

The neural cells 1�104 cm�2 were seeded in 96-well plates for
cell viability analysis. After exposure to AgNPs or LPS, the sus-
pensions were discarded, alamarBlues reagent (DMEM/10 per-
cent FBS 1:10; Invitrogen) was added as a cell viability indicator
followed by a 2 h incubation at 37 °C, and the absorbance was
monitored at 570 nm using 600 nm as a reference wavelength. The
cell viability was calculated as [cell number of exposure samples]/
[cell number of control]�100. Cell numbers were derived from a
standard curve, which was obtained after seeding serially diluted
cells (from 5�104 to 1.56�103 cells/ml) in a 96-well plate.



Fig. 2. Cell proliferation after exposure to AgNPs and LPS. Neural cells were treated
with different concentration of 3–5 nm AgNPs (0.5, 1, 5, 10 and 12.5 μg/ml) and LPS
(ALT 2 μg/ml, BV-2 0.2 μg/ml and N2a 2 μg/ml) for 24 h. The data were presented as
mean7SD (n¼3). Asterisk indicates significant difference at po0.05 compared
with control. ALT: astrocyte, BV-2: microglia, and N2a: neuron cells.
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2.4. Cytokine assay of IL-1β

The concentrations of pro-inflammatory cytokine IL-1β were
determined using ELISA kits (Mouse IL-1β Instant ELISA,
eBioscience, San Diego, Canada) according to the operation man-
ual. A 96-well plate was coated with capture antibody (purified
anti-mouse IL-1β) in coating buffer and incubated overnight at
4 °C. After three time wash with PBST (PBS with 1 percent Tween
20), the blocking solution (200 μl) was added to each well with
1 h. After wash, the samples (100 μl) and IL-1β standards (16–
2000 pg/ml) were added to each well for 2 h incubation at room
temperature. After incubation and wash, the 100 ul of biotin-
conjugated anti-mouse IL-1β and streptavidin–horseradish per-
oxidase (HRP) were added to each well for 30 min incubation, then
wash, and each well was added to 100 μl TMB (3,3′,5,5′-Tetra-
methylbenzidine) substrate solution for 15 min. Final, the 50 μl
stop solution (2 M H2SO4) was added to each well and the optical
density was determined at 450 nm using a VERSAmax microplate
reader (Molecular Devices, Sunnyvale, Canada).

2.5. Immunofluorescent detection of Aβ protein

N2a cells cultured on coverslips were washed twice with 1X
PBS and then fixed with 4 percent PFA for 10 min at 4 °C, and
washed with PBS. Cells were permeabilized with 0.1 percent Triton
X-100/PBS solution at room temperature for 30 min, blocked in
2 percent horse serum (HS) at room temperature for 30 min, and
then incubated for 1 h respectively with primary rabbit anti-
mouse Aβ1–40 (1:500; Cat. 171608, Merck Millipore, Darmstadt,
Germany) or primary rabbit anti-mouse Aβ1–42 (1:500; Cat.
171609, Merck Millipore). The coverslips were then washed three
times with PBS and stained with secondary fluorescein iso-
thiocyanate (FITC)-conjugated goat anti-rabbit IgG (1:500; Cat. 12-
507, Merck Millipore). After washed in PBS, the coverslips were
incubated with Hoechst 33258 (1:20; Cat. 23491-45-4, Sigma-Al-
drich, St. Louis, MO) and rinsed in PBS. Coverslips were mounted
on slides in mountain medium. Immunofluorescence images were
Fig. 1. AgNPs uptake in mouse neuron N2a cells. A polarizing microscope was used to d
culture medium, or (C, D) exposed to 12.5 μg/ml AgNPs for 24 h. The bright field (A, C
corresponding cells respectively undertaken in 200� magnification with 30 μs and 10 m
spots mainly located inside the neural cells. (For interpretation of the references to colo
captured with an inverted microscope with fluorescence filters
(Axio Observer A1/D1, Zeiss, Oberkochen, Germany).

2.6. RNA extraction

Total RNA was isolated respectively from ALT, BV-2 and N2a
cells in exposure to AgNPs after 24 h using RNA Trizol (Invitrogen).
After the culture medium were removed, neural cells were dis-
solved in 1 ml of TRIzol reagent, and then 0.2 ml chloroform was
added a 1.5 ml eppendorf tube. The mixture was shook vigorously
for 15 s and centrifuged at 12,000g for 15 min at 4 °C. Next, the
supernatant was transferred to a fresh tube, and 0.5 ml iso-
propanol (SIGMA) was added at room temperature for 10 min. The
etect 5 nm AgNPs distribution in N2a cells. N2a cells were (A, B) cultured in normal
) and the dark field (B, D) indicate phase contrast image and polarizing image of
s exposure time. The red arrows point the location of AgNPs reflecting the bright
r in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Cytokines IL-1β in neural cells after exposure to AgNPs and LPS. (A) ALT, (B) BV-2 and (C) N2a cells were respectively treated with different concentrations of 3–5 nm
AgNPs (5 and 12.5 μg/ml) and LPS (ALT 2 μg/ml, BV-2 0.2 μg/ml and N2a 2 μg/ml) for 24 h. The data were presented as mean7SD (n¼3). Asterisk indicates significant
difference at po0.05 compared with control. ALT: astrocyte, BV-2: microglia, and N2a: neuron cells.
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RNA was precipitated after centrifugation at 12,000g for 10 min at
4 °C. The RNA pellet was washed with 1 ml of 75 percent ethanol
(Taiwan Tobacco & Liquor Corporation, Taipei, Taiwan) and cen-
trifuged at 7500g for 5 min at 4 °C to remove the ethanol. The RNA
pellet was dried up and diluted with RNase-free water.The purified
RNA was quantified using Nanodrop 2000c (Thermo, Wilmington,
Massachusetts).

2.7. Reverse transcription polymerase chain reaction (RT-PCR)

cDNA was synthesized from total RNA by a high-capacity cDNA
reverse transcription kit (Applied Biosystems, California). The 3 μg
RNA was added 1.0 μl MultiScribe™ reverse transcriptase
(50 unit μL

�1), 2.0 μl 10� RT random primers, 0.8 μl 20� con-
centrated dNTP mix, 2.0 μl 10� concentrated RT buffer and RNase
free water (DEPC water) in a 0.2 ml PCR tube, and subsequently
amplified by PCR with one cycle of 20 °C 10 min, 37 °C 120 min
and 85 °C 5 s.

2.8. Real time PCR for gene expression quantitation

One hundred nanograms cDNA was a was amplified by PCR
with 40 cycles of denaturing (95 °C, 15 s), annealing (55 °C, 30 s)
and extension (72 °C, 45 s) using 2� power SYBR green PCR
master mix (Applied Biosystems). PCR primers: CXCL13 sense 5′-
ATG TGT GAA TCC TCG TGC CAA-3′ and anti-sense 5′-AAA AAA
GGT GCA GGT GTG TCT-3′; MARCO sense 5′-GGG TCA AAA AGG
CGA ATC T-3′ and anti-sense 5′-ATG TTC CCA GAG CCA CCT-3′; GSS
sense 5′-GGT ATC TTC CCT CAG CAG CCT T-3′ and anti-sense 5′-
GCT TCC ATT CCC ACA CTC CAA A-3′; APP sense 5′-CTG GAC GGT
TCG GGC TCT-3′ and anti-sense 5′-CGG GTC TGA CTC CCA CTT TC-
3′; LDLR sense 5′-TCC AAT CAA TTC AGC TGT GGA G-3′ and anti-
sense 5′-ATC AGA GCC ATC TAG GCA ATC TCG-3′; NEP sense 5′-
AAA GCC AAA GAA GAA ACA GCG A-3′ and anti-sense 5′-GCA TAG
AGA GCG ATC ATT GTC ACC G-3′; β-actin sense 5′-ATG CTC CCC
GGG CTG TAT-3′ and anti-sense 5′-CCA CTG CTC CGG GTC TCG-3′.
Quantitative analysis of PCR products was carried out by a se-
quence detector (Model 7300, Applied Biosystems) according to
the manufacturer's instruction. The signal of SYBR green was
measured at 530 nm during extension phase, and collected and
analyzed with SDS 1.0 software. The threshold cycle (Ct) value
denotes the cycle number at which the fluorescence generated
within a reaction across the threshold, thus the Ct value is at the
point accumulated a sufficient number of amplicons during the
reaction. The relative level of mRNA expression is a ratio of optical
density of the experimental groups to that of β-actin (internal
control, an endogenous house-keeping gene). The relative Ct value
of different condition was compared to that of control cells as
reference to estimate the fold change of mRNA expression among
the samples. Triplicates were performed for each primer pair.

2.9. Western blotting for protein determination

N2a cells were lysed with RIPA buffer (Cell Signaling, Danvers,
MA) containing proteinase inhibitor Cocktail (Sigma), and cen-
trifuged at 8000g for 3 min at 4 °C. Protein samples in the super-
natant were immediately transferred, and the concentration was
measured using a Bicinchoninic Acid Protein Assay Kit (Sigma).
Protein in the samples were then electrophoresed over a 10% so-
dium dodecyl sulfate polyacrylamide gel, and subsequently
transferred to a hydrophobic PVDF membrane (Millipore). The
membrane-bound proteins were respectively immunostained



Fig. 4. Amyloid-β1–40 plaques inside mouse neuron N2a cells in exposure to AgNPs. Immunofluorescent detection of primary rabbit anti‐mouse Aβ1–40 was stained with
secondary goat FITC-conjugated anti-rabbit IgG in N2a cells after 24 h 12.5 μg/ml 3–5 nm AgNPs treatment. The control groups (A–D) and AgNPs exposure groups (F–I) were
taken under 100� magnification respectively at 172 ms, 120 ms and 500 ms exposure time for bright field (BF), hoechst, and primary rabbit anti‐mouse Aβ1–40. (E) and
(J) were a single cell image respectively according to (D) and (I) fields taken under 400� magnification. The white arrows pointed out the view of 400� images where are
selected from 100� ones.
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with 1:1000 primary rabbit anti-mouse NEP (CD10) (Cat. EPR 2997,
Abcam, Cambridge, MA), APP (Cat. EPR 5118-34, Abcam), LDLR
(Cat. EP 155311, Abcam) or β-actin (Senta Cruz Biotechnlogy, Senta
Cruz, CA) antibody and followed by treatment with secondary
anti-rabbit IgG horseradish peroxidase (HRP) antibody (Senta Cruz
Biotechnlogy, CA). The tagged proteins were detected using a
chemiluminescence reagent (Thermo Scientific, Rockford, IL) and
photographed in a G:Box ChemiXT 16 system (Syngene, Frederick,
MD). The band intensities in the western blots were quantified by
ImageJ software.
2.10. Statistical analysis

Results were described as mean7standard deviation. Data
analysis was conducted by the statistical package SPSS 13.0 (SPSS
Inc., Chicago, Illinois). The statistically significant differences of cell
proliferation, IL-1β, gene expression and protein respectively be-
tween AgNPs treatment and control were analyzed using Student's
t test. All statistical significances were determined at two-tailed p
valueo0.05.



Fig. 5. Amyloid-β1-42 plaques inside mouse neuron N2a cells in exposure to AgNPs. Immunofluorescent detection of primary rabbit anti‐mouse Aβ1–42 was stained with
secondary goat FITC-conjugated anti-rabbit IgG in N2a cells after 24 h 12.5 μg/ml 3–5 nm AgNPs treatment. The control groups (A–D) and AgNPs exposure groups (F–I) were
taken under 100� magnification respectively at 172 ms, 120 ms and 500 ms exposure time for bright field (BF), hoechst, and primary rabbit anti-mouse Aβ1–42. (E) and
(J) were a single cell image respectively according to (D) and (I) fields taken under 400� magnification. The white arrows pointed out the view of 400� images where are
selected from 100� ones.
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3. Results

3.1. Permeability, cytotoxicity and pro-inflammation of AgNPs in
neural cells

The zeta potential of the 3–5 nm AgNPs used in this study was
�4.2 mV in culture medium. The 3–5 nm AgNPs (12.5 μg/ml) can
cross the cell membrane of N2a cells detectable under a polarizing
microscope (Fig. 1). The cell proliferation of ALT, BV-2 and N2a
cells exposed to AgNPs (0.5, 1, 5, 10 and 12.5 μg/ml) and LPS (0.2,
2 μg/ml) for 24 h were shown in Fig. 2. The cell proliferation was
decreased in ALT cells (0.5, 1, 10 and 12.5 μg/ml) and N2a cells
(12.5 μg/ml) but not differently changed in BV-2 cells after AgNPs
exposure. LPS decreased cell proliferation obviously in ALT cells
(2 μg/ml) and BV-2 cells (0.2 μg/ml). Additionally, the IL-1β se-
cretion of ALT, BV-2 and N2a cells was detected after 24 h AgNPs
exposure (Fig. 3). IL-1β protein was significantly increased in BV-2
cells after 12.5 μg/ml AgNPs exposure.



Fig. 6. Quantitative changes of (A) CXCL13, (B) MARCO, (C) GSS, (D) APP, (E) LDLR and (F) NEP gene expression in the neural cells with the treatment of 3–5 nm AgNPs or LPS.
Neural cells were treated with different concentration of 3–5 nm AgNPs (0.5, 1, 5, 10 and 12.5 μg/ml) and LPS (ALT 2 μg/ml, BV-2 0.2 μg/ml and N2a 2 μg/ml) for 24 h. The data
were presented as mean7SD (n¼3). Asterisk indicates significant difference at po0.05 compared with control. ALT: astrocyte, BV-2: microglia, and N2a: neuron cells.
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3.2. Aβ amyloid deposition in neural cells after AgNPs exposure

The immunofluorescence images revealed that Aβ1–40 (Fig. 4)
and Aβ1–42 (Fig. 5) proteins were inducible to generate after AgNPs
exposure 12.5 μg/ml in N2a cells, and detectable in a fluorescence
microscope.

3.3. Gene expression of neural cells in exposure to AgNPs

LPS induced the expression of CXCL13 and MARCO genes for
inflammatory process and phagocytosis. The gene expression of
CXCL13 and MARCO were increased in ALT, BV-2 and N2a cells at
the higher dose of AgNPs (5, 10 and 12.5 μg/ml) (Fig. 6A and B).
The GSS mRNA level was significantly decreased in ALT cells (0.5, 1,
5, 10 and 12.5 μg/ml) and increased in BV-2 cells (10 and 12.5 μg/
ml) after AgNPs exposure (Fig. 6C). On the other hand, the gene
expression of AD process related genes such as APP, LDLR and NEP
were also altered in exposure to AgNPs. The gene expression of
APP was elevated in ALT, BV-2 (5, 10 and 12.5 μg/ml) and N2a
(12.5 μg/ml) cells (Fig. 6D). On the contrary, the decreased LDLR
mRNA level was observed in 12.5 μg/ml AgNPs-treated ALT, BV-2
and N2a cells (Fig. 6E). NEP gene expression also reduced sig-
nificantly in N2a cells exposed to AgNPs (Fig. 6F).

3.4. Protein determination of neural cells in exposure to AgNPs

The protein levels of APP, LDLR and NEP were determined after
N2a cells exposed to 1, 5, 10, 12.5 and 15 μg/ml AgNPs,



Fig. 7. Protein levels of APP, LDLR and NEP in N2a cells after AgNPs exposure. The total protein were 40, 40 and 100 μg individually loaded for immnunoblotting to determine
(A) APP, (B) LDLR and (C) NEP in N2a cells exposed to 1, 5, 10, 12.5 and 15 μg/ml AgNPs for 24 h, and quantified by ImageJ. Asterisk indicates significant difference at po0.05
compared with control.

C.-L. Huang et al. / Environmental Research 136 (2015) 253–263260
respectively. APP levels were obviously induced in exposure to 10,
12.5 and 15 μg/ml AgNPs (Fig. 7A). LDLR levels were significantly
reduced after exposure to 1, 10 and 15 μg/ml AgNPs (Fig. 7B). The
level of NEP protein was increased after AgNPs and returned to the
steady state as control group (Fig. 7C).
4. Discussion

This study found that 3–5 nm AgNPs can cross the cell mem-
brane (Fig. 1), induced IL-1β secretion for inflammatory response
(Fig. 3), and accelerate Aβ1–40 (Fig. 4) and Aβ1–42 (Fig. 5) genera-
tion and deposition. AgNPs exposure (5, 10, 12.5 mg/ml) induced
the gene expression of CXCL13, MARCO and GSS for inflammatory
response and oxidative stress (Fig. 6). Besides, AgNPs exposure
increased the gene expression and protein level of APP for Aβ
generation, and reduced LDLR and NEP for Aβ uptake/transporter
and Aβ degradation (Figs. 6 and 7). These findings suggested that
AgNPs exposure potentially caused neurodegenerative disorder
progression underlying Aβ deposition.

4.1. AgNPs exposure induced inflammatory response in mouse neural
cells

This study found that AgNPs crossed the cell membrane of
neuron cells and mostly distributed in the cytoplasm (Fig. 1), and
induced IL-1β secretion (Fig. 3) for inflammatory response in
neural cells (astrocytes, microglia and neuron cells). AgNPs and
iron oxide nanoparticles in astrocytes are internalized by en-
docytotic uptake processes into cellular vesicles to respectively
release Ag and ferrous iron and induce ROS generation and in-
flammation (Hohnholt et al., 2013). Prasad et al. (2013) indicated
that AgNPs have a higher rate of cellular uptake compared with
AgNO3 and cause oxidative stress and inflammatory response in
liver HepG2 cells. Moreover, AgNPs can enter the brain through
the olfactory nerve, and the toxic effect of AgNPs is stronger than
silver ions because ions are consumed before reaching the cell
membrane (Wijnhoven et al., 2009, Quadros and Marr, 2010).
Besides, in the analysis of Mouse Oxidative Stress and Antioxidant
Defense Arrays, male C57BL/6N mice administered with 25 nm
AgNPs change the expression of oxidative stress associated genes
in the caudate, frontal cortex and hippocampus (Rahman et al.,
2009).

The results of this study indicated that AgNPs activated stress-
responsive gene GSS and immune reaction genes CXCL13 and
MARCO. AgNPs induces inflammatory cytokine TNF-α release, ROS
and endoplasmatic reticulum (ER) stress response in zebrafish li-
ver cells (Christen et al., 2013). Cha et al. (2008) found the AgNPs-
treated liver cells have the up-regulated gene expression of CXCL13
and MARCO to induce apoptosis and inflammation. Moreover,
chemokine C–C motif ligand (CCL) 2 can activate resident micro-
glias in the brain to recruit peripheral macrophages and increase
chemokine family CCL24 gene expression (Selenica et al., 2013).
Kang et al. (2012) reported that 7.572.5 nm AgNPs evoke ROS
generation and increase a major cellular thiol antioxidant GSH
level in human renal proximal tubular epithelial HK-2 cells. Im-
portantly, the diameter of 20 and 40 nm AgNPs (10 and 20 μg/ml)
can lead to mixed primary cortical neural cells increase the level of
ROS in accompanied with calcium rises, and the smaller AgNPs
have stronger cytotoxicity than bigger ones (Haase et al., 2012).

4.2. AgNPs exposure changed gene expression and protein level of
amyloid plaque deposition in mouse neuron cells

Neuroinflammation and beta-amyloid deposition led to mem-
ory impairment in Alzheimer's disease transgenic mice (Xu et al.,
2014). According to above studies, we inferred that chronic ROS
increase and unbalance calcium level in neural cells may cause AD
neurodegenerative disorder. This study observed that AgNPs
caused Aβ amyloid plaque deposition in mouse neuron N2a cells



Fig. 8. A schematic diagram of AgNPs exposure in brain neural cells to alter gene expression potentially resulting in the progression of Aβ plaque deposition and pathological
feature of Alzheimer's disease. AgNPs can enter across neuronal cell membrane and induce the gene expression of CXCL13, MARCO and GSS in response to inflammatory
reaction and oxidative stress. Sequentially, APP gene is activated for Aβ amyloid production, ApoE transport is influenced to accelerate Aβ aggregation, and NEP and LDLR
genes are reduced for Aβ deposition. In addition, the Aβ proteins are increased through the up-regulated.RAGE and down-regulated.LRP1 expression, and the dramatically
enhanced level of Aβ proteins lead to decrease IDE and NEP gene expression to accelerate Aβ deposition. The AgNPs-induced. neuroinflammatory response and Aβ amyloid
deposition might evolve neurodegenerative Alzheimer's disease. The number and arrow marked in red are fold-change. levels and up-/down-regulation. of gene expression.
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(Figs. 4 and 5). Furthermore, this study determined the gene ex-
pression corresponding to Aβ generation and deposition in neural
cells treated with AgNPs (Fig. 6).

The ability of insoluble 40–42 peptides of Aβ amyloid has been
considered more rapidly aggregation and more neurotoxicity in
AD progression (Landau et al., 2013). In this study, AgNPs exposure
can induce Aβ1–40 and Aβ1–42 peptides aggregation in neural cells
(Figs. 4 and 5). Additionally, the gene expression (Fig. 6) and
protein level (Fig. 7) of Aβ amyloid generation and deposition re-
levant to AD progression have been explored after AgNPs ex-
posure. AgNPs induced the expression of APP, and otherwise, at-
tenuated NEP and LDLR for the potential effect on Aβ deposition.
APP protein is an integral membrane glycoprotein expressing in
the brain and central nervous system, and Aβ amyloid is produced
by sequential cleavage of APP by β-secretase and γ-secretase
(Dong et al., 2012). The increased APP and β-secretase levels lead
to increase Aβ amyloid formation and aggregation potentially for
neurodegenerative disease (Meraz–Rios et al., 2013). The results of
this study suggested that AgNPs led to up-regulate the gene ex-
pression of APP, and down-regulate Aβ uptake gene LDLR and Aβ
degradation gene NEP. LDLR can enhance Aβ uptake and de-
gradation to regulate Aβ levels in the mouse brain (Basak et al.,
2012). Cao et al. (2006) indicated that Aβ deposition accompanies
with the increased ApoE expression in LDLR-deficient Tg2576
mice. LDLR-deficient Tg2576 mice have disorders in hypercholes-
terolemia, age-dependent cerebral β-amyloidosis and spatial
learning deficits after Aβ deposition. Thus, LDLR plays an
important role in amyloidosis and the development of Alzheimer-
type learning impairment. NEP is the major protease involved in
Aβ degradation. The decreased NEP mRNA level is observed in AD
patients (Wang et al., 2010). AD patients have the significantly
lower NEP mRNA and protein levels in the brain with high Aβ
plaque burdens (Park et al., 2013).

4.3. The potential mechanism of AD pathogenesis in mouse neural
cells exposure to AgNPs

This study observed that AgNPs activated the gene expression
of GSS, CXCL13 and MARCO for stress-response and immune reac-
tion, and induced APP and attenuated NEP and LDLR genes for the
potential effect on Aβ deposition. Regarding to our findings in this
study, a schematic diagram illustrated in Fig. 8 described that
AgNPs exposure in brain neural cells results in gene expression
changes underlying the possible progression of Aβ plaque de-
position for AD pathological feature. Inflammation elicits Aβ de-
position via the activated microglia cells (Cameron and Landreth,
2010). This present study found AgNPs can enter into N2a cells and
induce inflammatory response and Aβ deposition. The gene ex-
pression of CXCL13, MARCO and GSS in ALT, BV-2 and N2a cells are
enhanced to defense against AgNPs-induced inflammatory reac-
tion and oxidative stress. The APP protein is assembled from
amino acids using information encoded in APP gene, which can be
cleaved by α-secretase, β-secrease and γ-secrease to produce
different length of Aβ peptides such as Aβ1–40 or Aβ1–42. Both of
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receptor for advanced glycation end product (RAGE) and low
density lipoprotein receptor-related protein 1 (LRP1) are Aβ re-
ceptors able to bind Aβ or ApoE/Aβ complexes. RAGE transports
Aβ proteins from blood to brain; in contrast, LRP1 transfers Aβ
proteins from brain to blood (Kanekiyo et al., 2012; Han et al.,
2011). LDLR plays the main regulator with ApoE in CNS trafficking
and breaking the balance of Aβ levels. The different isoforms of
ApoE play different function, the neutral ApoE3 and protective
ApoE2 can support Aβ transport or degradation, and the AD-risk
factor ApoE4 accelerates Aβ aggregation for amyloid plaque for-
mation (Morris et al., 2010). There are sequential pathways to
balance the Aβ levels in the brain, e.g., Aβ clearance through BBB
via RAGE and LRP1, Aβ degradation via NEP protease and insulin-
degrading enzyme (IDE), and Aβ deposition internalized in neural
cells via ApoE receptor when ApoE34ApoE4. AgNPs can activate
APP gene to generate Aβ amyloid, and disturb ApoE transport and
reduce NEP and LDLR expression to accelerate Aβ aggregation and
deposition in neural cells.
5. Conclusion

In summary, this study identified 3–5 nm AgNPs can enter in
mouse neural cells to induce pro-inflammatory cytokine secretion
and increase Aβ amyloid deposition in response to the changes of
gene expression in inflammatory response, oxidative stress and Aβ
degradation. These results suggested that AgNPs-induced neu-
roinflammatory response and Aβ deposition might evolve the
progress of neurodegenerative disorders. It is necessary to note the
daily usage of silver nanoparticles.
Acknowledgment

We thank Gold Nanotech, Inc., Taiwan for providing AgNP
materials in this collaborative research.
References

Basak, J.M., Verghese, P.B., Yoon, H., Kim, J., Holtzman, D.M., 2012. Low-density li-
poprotein receptor represents an apolipoprotein E-independent pathway of
Abeta uptake and degradation by astrocytes. J. Biol. Chem. 287, 13959–13971.

Cameron, B., Landreth, G.E., 2010. Inflammation, microglia, and Alzheimer's disease.
Neurobiol. Dis. 37, 503–509.

Cao, D., Fukuchi, K., Wan, H., Kim, H., Li, L., 2006. Lack of LDL receptor aggravates
learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol.
Aging 27, 1632–1643.

Cha, K., Hong, H.W., Choi, Y.G., Lee, M.J., Park, J.H., Chae, H.K., Ryu, G., Myung, H.,
2008. Comparison of acute responses of mice livers to short-term exposure to
nano-sized or micro-sized silver particles. Biotechnol. Lett. 30, 1893–1899.

Christen, V., Capelle, M., Fent, K., 2013. Silver nanoparticles induce endoplasmatic
reticulum stress response in zebrafish. Toxicol. Appl. Pharmacol. 272, 519–528.

Dong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzhei-
mer's disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neuro-
degener. 1, 18.

Dziendzikowska, K., Gromadzka-Ostrowska, J., Lankoff, A., Oczkowski, M., Krawc-
zynska, A., Chwastowska, J., Sadowska-Bratek, M., Chajduk, E., Wojewodzka, M.,
Dusinska, M., Kruszewski, M., 2012. Time-dependent biodistribution and ex-
cretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol. 32, 920–928.

El-Amouri, S.S., Zhu, H., Yu, J., Gage, F.H., Verma, I.M., Kindy, M.S., 2007. Neprilysin
protects neurons against Abeta peptide toxicity. Brain Res. 1152, 191–200.

Eom, H.J., Choi, J., 2010. p38 MAPK activation, DNA damage, cell cycle arrest and
apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells.
Environ. Sci. Technol. 44, 8337–8342.

Foldbjerg, R., Dang, D.A., Autrup, H., 2011. Cytotoxicity and genotoxicity of silver
nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85,
743–750.

Gaiser, B.K., Hirn, S., Kermanizadeh, A., Kanase, N., Fytianos, K., Wenk, A., Haberl, N.,
Brunelli, A., Kreyling, W.G., Stone, V., 2013. Effects of silver nanoparticles on the
liver and hepatocytes in vitro. Toxicol. Sci. 131, 537–547.

Haase, A., Rott, S., Mantion, A., Graf, P., Plendl, J., Thunemann, A.F., Meier, W.P.,
Taubert, A., Luch, A., Reiser, G., 2012. Effects of silver nanoparticles on primary
mixed neural cell cultures: uptake, oxidative stress and acute calcium re-
sponses. Toxicol. Sci. 126, 457–468.

Han, S.H., Kim, Y.H., Mook-Jung, I., 2011. RAGE: the beneficial and deleterious effects
by diverse mechanisms of actions. Mol. Cells 31, 91–97.

Hohnholt, M.C., Geppert, M., Luther, E.M., Petters, C., Bulcke, F., Dringen, R., 2013.
Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem. Res.
38, 227–239.

Kanekiyo, T., Liu, C.C., Shinohara, M., Li, J., Bu, G., 2012. LRP1 in brain vascular
smooth muscle cells mediates local clearance of Alzheimer's amyloid-beta. J.
Neurosci. 32, 16458–16465.

Kang, S.J., Lee, Y.J., Lee, E.K., Kwak, M.K., 2012. Silver nanoparticles-mediated G2/M
cycle arrest of renal epithelial cells is associated with NRF2-GSH signaling.
Toxicol. Lett. 211, 334–341.

Koike, S., Ogasawara, Y., Shibuya, N., Kimura, H., Ishii, K., 2013. Polysulfide exerts a
protective effect against cytotoxicity caused by t-buthylhydroperoxide through
Nrf2 signaling in neuroblastoma cells. FEBS Lett. 587, 3548–3555.

Komine, H., Kuhn, L., Matsushita, N., Mule, J.J., Pilon-Thomas, S., 2013. Examination
of MARCO activity on dendritic cell phenotype and function using a gene
knockout mouse. PLoS One 8, e67795.

Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W., Manir-
atanachote, R., 2010. Determination of silver nanoparticle release from anti-
bacterial fabrics into artificial sweat. Part Fibre Toxicol. 7, 8.

Landau, S.M., Lu, M., Joshi, A.D., Pontecorvo, M., Mintun, M.A., Trojanowski, J.Q.,
Shaw, L.M., Jagust, W.J., Alzheimer’s Disease Neuroimaging, I., 2013. Comparing
positron emission tomography imaging and cerebrospinal fluid measurements
of beta-amyloid. Ann. Neurol. 74, 826–836.

Lee, D.Y., Fortin, C., Campbell, P.G., 2005. Contrasting effects of chloride on the
toxicity of silver to two green algae, Pseudokirchneriella subcapitata and
Chlamydomonas reinhardtii. Aquat. Toxicol. 75, 127–135.

Loo, S.L., Fane, A.G., Lim, T.T., Krantz, W.B., Liang, Y.N., Liu, X., Hu, X., 2013. Super-
absorbent cryogels decorated with silver nanoparticles as a novel water tech-
nology for point-of-use disinfection. Environ. Sci. Technol. 47, 9363–9371.

Meraz-Rios, M.A., Toral-Rios, D., Franco-Bocanegra, D., Villeda-Hernandez, J., Cam-
pos-Pena, V., 2013. Inflammatory process in Alzheimer's Disease. Front. Integr.
Neurosci. 7, 59.

Morris, J.C., Roe, C.M., Xiong, C., Fagan, A.M., Goate, A.M., Holtzman, D.M., Mintun,
M.A., 2010. APOE predicts amyloid-beta but not tau Alzheimer pathology in
cognitively normal aging. Ann. Neurol. 67, 122–131.

Nakajima, T., Amanuma, R., Ueki-Maruyama, K., Oda, T., Honda, T., Ito, H., Yamazaki,
K., 2008. CXCL13 expression and follicular dendritic cells in relation to B-cell
infiltration in periodontal disease tissues. J. Periodontal. Res. 43, 635–641.

Park, M.H., Lee, J.K., Choi, S., Ahn, J., Jin, H.K., Park, J.S., Bae, J.S., 2013. Recombinant
soluble neprilysin reduces amyloid-beta accumulation and improves memory
impairment in Alzheimer's disease mice. Brain Res. 1529, 113–124.

Prasad, R.Y., Mcgee, J.K., Killius, M.G., Suarez, D.A., Blackman, C.F., Demarini, D.M.,
Simmons, S.O., 2013. Investigating oxidative stress and inflammatory responses
elicited by silver nanoparticles using high-throughput reporter genes in HepG2
cells: effect of size, surface coating, and intracellular uptake. Toxicol. In Vitro 27,
2013–2021.

Quadros, M.E., Marr, L.C., 2010. Environmental and human health risks of aero-
solized silver nanoparticles. J. Air Waste Manag. Assoc. 60, 770–781.

Rahman, M.F., Wang, J., Patterson, T.A., Saini, U.T., Robinson, B.L., Newport, G.D.,
Murdock, R.C., Schlager, J.J., Hussain, S.M., Ali, S.F., 2009. Expression of genes
related to oxidative stress in the mouse brain after exposure to silver-25 na-
noparticles. Toxicol. Lett. 187, 15–21.

Ribeiro, F., Gallego-Urrea, J.A., Jurkschat, K., Crossley, A., Hassellov, M., Taylor, C.,
Soares, A.M., Loureiro, S., 2013. Silver nanoparticles and silver nitrate induce
high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio.
Sci. Total Environ. 466–467, 232–241.

Selenica, M.L., Alvarez, J.A., Nash, K.R., Lee, D.C., Cao, C., Lin, X., Reid, P., Mouton, P.R.,
Morgan, D., Gordon, M.N., 2013. Diverse activation of microglia by chemokine
(C–C motif) ligand 2 overexpression in brain. J. Neuroinflammation 10, 86.

Sharma, H.S., Sharma, A., 2012. Neurotoxicity of engineered nanoparticles from
metals. CNS Neurol. Disord. Drug Targets 11, 65–80.

Singh, R.P., Ramarao, P., 2012. Cellular uptake, intracellular trafficking and cyto-
toxicity of silver nanoparticles. Toxicol. Lett. 213, 249–259.

Smith, M.P., Cass, W.A., 2007. Oxidative stress and dopamine depletion in an in-
trastriatal 6-hydroxydopamine model of Parkinson's disease. Neuroscience 144,
1057–1066.

Sofroniew, M.V., Vinters, H.V., 2010. Astrocytes: biology and pathology. Acta Neu-
ropathol. 119, 7–35.

Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., Xi, T., 2009. Distribution,
translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Na-
notechnol. 9, 4924–4932.

Tang, J., Xiong, L., Zhou, G., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., Lu, S., Wan, Z.,
Chou, L., Xi, T., 2010. Silver nanoparticles crossing through and distribution in
the blood–brain barrier in vitro. J. Nanosci. Nanotechnol. 10, 6313–6317.

Tappin, A.D., Barriada, J.L., Braungardt, C.B., Evans, E.H., Patey, M.D., Achterberg, E.P.,
2010. Dissolved silver in European estuarine and coastal waters. Water Res. 44,
4204–4216.

Verano-Braga, T., Miethling-Graff, R., Wojdyla, K., Rogowska-Wrzesinska, A.,
Brewer, J.R., Erdmann, H., Kjeldsen, F., 2014. Insights into the cellular response
triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8,
2161–2175.

Wang, S., Wang, R., Chen, L., Bennett, D.A., Dickson, D.W., Wang, D.S., 2010. Ex-
pression and functional profiling of neprilysin, insulin-degrading enzyme, and

http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref1
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref1
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref1
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref1
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref2
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref2
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref2
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref3
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref3
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref3
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref3
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref4
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref4
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref4
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref4
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref5
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref5
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref5
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref6
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref6
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref6
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref7
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref7
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref7
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref7
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref7
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref8
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref8
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref8
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref9
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref9
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref9
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref9
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref10
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref10
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref10
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref10
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref11
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref11
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref11
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref11
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref12
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref12
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref12
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref12
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref12
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref13
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref13
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref13
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref14
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref14
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref14
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref14
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref15
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref15
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref15
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref15
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref16
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref16
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref16
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref16
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref16
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref16
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref17
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref17
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref17
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref17
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref18
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref18
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref18
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref19
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref19
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref19
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref20
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref20
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref20
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref20
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref20
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref21
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref21
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref21
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref21
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref22
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref22
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref22
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref22
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref23
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref23
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref23
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref24
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref24
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref24
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref24
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref25
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref25
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref25
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref25
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref26
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref26
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref26
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref26
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref27
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref27
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref27
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref27
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref27
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref27
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref28
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref28
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref28
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref29
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref29
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref29
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref29
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref29
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref30
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref30
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref30
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref30
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref30
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref31
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref31
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref31
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref32
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref32
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref32
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref33
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref33
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref33
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref34
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref34
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref34
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref34
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref35
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref35
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref35
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref36
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref36
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref36
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref36
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref37
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref37
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref37
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref37
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref38
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref38
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref38
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref38
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref39
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref39
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref39
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref39
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref39
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref40
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref40


C.-L. Huang et al. / Environmental Research 136 (2015) 253–263 263
endothelin-converting enzyme in prospectively studied elderly and Alzheimer's
brain. J. Neurochem. 115, 47–57.

Wang, Y., Wang, B., Zhu, M.T., Li, M., Wang, H.J., Wang, M., Ouyang, H., Chai, Z.F.,
Feng, W.Y., Zhao, Y.L., 2011. Microglial activation, recruitment and phagocytosis
as linked phenomena in ferric oxide nanoparticle exposure. Toxicol. Lett. 205,
26–37.

Wei, J., Gabrusiewicz, K., Heimberger, A., 2013. The controversial role of microglia in
malignant gliomas. Clin. Dev. Immunol. 2013, 285246.

Weiss, N., Miller, F., Cazaubon, S., Couraud, P.O., 2009. The blood–brain barrier in
brain homeostasis and neurological diseases. Biochim. Biophys. Acta 1788,
842–857.

Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, C.A., Hagens, W.I., Oomen, A.G.,
Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers,
S., De Jong, W.H., Van Zijverden, M., Sips, A.J.A.M., Geertsma, R.E., 2009. Nano-
silver a review of available data and knowledge gaps in human and environ-
mental risk assessment. Nanotoxicology 3, 109–138.

Xu, F., Piett, C., Farkas, S., Qazzaz, M., Syed, N.I., 2013. Silver nanoparticles (AgNPs)
cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured
cortical neurons. Mol. Brain 6, 29.

Xu, P.X., Wang, S.W., Yu, X.L., Su, Y.J., Wang, T., Zhou, W.W., Zhang, H., Wang, Y.J., Liu,
R.T., 2014. Rutin improves spatial memory in Alzheimer's disease transgenic
mice by reducing Aβ oligomer level andattenuating oxidative stress and neu-
roinflammation. Behav. Brain Res. 264, 173–180.

http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref40
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref40
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref40
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref41
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref41
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref41
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref41
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref41
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref42
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref42
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref43
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref43
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref43
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref43
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref44
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref44
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref44
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref44
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref44
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref44
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref45
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref45
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref45
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46
http://refhub.elsevier.com/S0013-9351(14)00405-8/sbref46

	Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells
	Introduction
	Material and methods
	Cell culture and exposure
	Polarizing microscope
	Cell proliferation of neural cells
	Cytokine assay of IL-1β
	Immunofluorescent detection of Aβ protein
	RNA extraction
	Reverse transcription polymerase chain reaction (RT-PCR)
	Real time PCR for gene expression quantitation
	Western blotting for protein determination
	Statistical analysis

	Results
	Permeability, cytotoxicity and pro-inflammation of AgNPs in neural cells
	Aβ amyloid deposition in neural cells after AgNPs exposure
	Gene expression of neural cells in exposure to AgNPs
	Protein determination of neural cells in exposure to AgNPs

	Discussion
	AgNPs exposure induced inflammatory response in mouse neural cells
	AgNPs exposure changed gene expression and protein level of amyloid plaque deposition in mouse neuron cells
	The potential mechanism of AD pathogenesis in mouse neural cells exposure to AgNPs

	Conclusion
	Acknowledgment
	References




